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Calculation results and comparison with the experimental data on a free submerged jet flowing out of a 
curvilinear slotted channel are presented. A unique equation for Monin-Obukhov' s coefficient valid for wall 
flows and free turbulence problems is obtained. 

It is known [1 ] that the initial nonuniformity of a velocity profile is accompanied by elevated turbulence level 

and turbulent viscosity as against the initial uniformity of the profile. Moreover, the curvilinear surface effect causes 

a change in the turbulence behavior due to the violation of the balance between centrifugal and pressure forces in 

jets and wakes [2 ]. The longitudinally oriented Taylor-Hertler vortices formed near the concave wall of a slotted 

channel owing to the available centrifugal forces [3 ] is another specific feature. In particular, this results in the fact 

that the averaged velocity distribution is characterized by nonsymmetry relative to the central jet plane, and the 
velocity maximum is shifted to the side of the concave channel wall [4 ] outward from the initial cross section. The 

distribution of rms values of longitudinal velocity component pulsations is clearly nonsymmetric. This is attributed 

to different conditions of turbulence generation in a given jet cross section [5 ]. 

The above-mentioned specific features presuppose use of turbulent boundary layer equations to a second 

approximation which take account of the variable streamline curvature in an explicit form and modification of the 

turbulent viscosity model supplemented with Monin-Obukhov's coefficient and the Richardson criterion [6 ]. The 

present article is aimed at developing an integral method of calculating nonsymmetric curvilinear jet flows based both 

on the integral relations of boundary layer theory to a second approximation and on the method of polynomial 
approximation of an expression for turbulent friction stress [7 ]. 

The integral relations of turbulent jet theory for a jet outflowing from a curvilinear slotted channel into a 
submerged space are written as [2 ] 
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Here, integration is made from the line of the maximum values of velocity (n = 0) to the nonsymmetric 

boundaries of the jets bl and b2, respectively (Fig. 1). Equations (1) show that as in the case of a rectilinear submerged 
jet the equal-momentum condition remains invariable if this condition is considered along the curved line of the 
maximum velocity values. System of equations (1), (2) in the limiting case of a rectilinear symmetric jet (R--, o~, bl 
= b2) reduces to known relations [1 ]. 

Solving the problem by the integral method relies on assigning a velocity profile in the following form: 

u/u,,, = ( l - -  rl)3 ( 1 q- 3~1) - -  b----L--~ ~q ( 1 - -  rl)3 , (3) 
R 

here t/= (n -nm) /b in  for the entrance section and r] -- n/bl  for the main section. Turbulent friction stress is modeled 
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Fig. 1. Flow pattern of a turbulent jet outflowing from a curvilinear slotted 
channel into a submerged space. 

by using the Prandtl formula and the Bradshow correction function 7r [6 ] for the longitudinal streamline curvature 

"r = • "t'r, 7r = 1 -~- 15 Ri, 
017. 

(4) 

where Monin-Obukhov's constant fl and turbulence structures x are determined from the best agreement between 

bl 
the calculated and experimental data; R'-~ = f Ri dn / (b l  +b2) is the jet cross-section-mean Richardson number; 

-b 2 
Ri = 2 (u /R) / (0u /0n )  is the local Richardson number. When the velocity profile is predetermined by expression (3) 

Ri = -4/5(b1+b2)/R. 
To determine jet flow characteristics seven parameters must be calculated; therefore, to close the system of 

equations (1), (2) the latter are supplemented with four equations, three of which are found by the differential 

geometry formulas 

R : ds/da, cos a ----- dx/ds, sin a = dy/ds (5) 

and by the velocity conjugation condition on the jet axis [2 ] 

bx = bz ( 2 . .bl (2 .... t ? , ) /  + - - ~ - )  (6) 

Based on expressions (3) and (4) for the velocity profile and turbulent friction, respectively, we calculate the 
values of the integrals entering into (1), (2), which reduce to a system of ordinary differential equations for the 

entrance section 

__d/ZOtds = (a~2a2a~-- a3) N I " 2 1  5 ~ (b~ ~- b~ I R  ' (7) 

dbol 2 a t . [  2 bot--}-bo2 ] = • 1 - -  , 1~ , (8) 
ds ( a.,. - -  aa) 5 R 

dbO~ds = - -  1 +  --ff-2 b~ q-b~ R (9) 

under the initial conditions 

s----0, n0t---- b0, b01 -----b02= O. (10) 

For the main section the system of equations is written as 
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Fig. 2. Characteristic thickness and maximum velocity variations in a jet; 8) data 
from [5 ] (a) and calculations of velocity maximum vs deviation angle 
(experiment 9, data from [2 ]) and relative flowrate variations (b). a, deg. 

I �84 1 
dum = - - 2 - a ~ - •  um 1 2 [~ (bl-b b~) (11) 
ds a3 bl 5 R ' 

db~ds = 4  a" x [  1 -  2 a 3  ' 5 ~ (b~+b2) ] R  , (12) 

db~ " = 4 a~ • b~ [ l "k aa bl - ~  [~ (bl + b2) J R  (13) 

subject to the corresponding initial conditions 

s = s e, u m = ue, b l = b l  e, bz=b2e.  (14) 

Values of the constants aj (j = 1, 2, 3, 4) entering into the systems of equations (7)- (9) and (11) - (13) and representing 

the values of the integrals of the velocity profiles are taken from [8 ]. The system of equations (7)-(9) permits an 
analytical solution for the characteristics of a nonsymmetric jet over the entrance section 

b0~.-. -- (a,--a3) --5- f~ s, (15) 

,2a~a~ 1 9 [~ • (16) no~=Oo (a~--  - - _ 1 /  l -  

---if- (ae. - -  a3) s 1 - -  --5-- [~ " (17) 

The system of equations (11)-(13) for the main section was solved numerically by the Runge-Kutta method. 
In this case, the boundaries 1~1 and ~'2 of the turbulent mixing region were reckoned from the straight line normal to 
the nozzle exit section (Fig. I). 

Analysis of expression (3) shows that when affected by the curvilinear surfaces the velocity profile becomes 
less full, especially over the range 0 < ~/ _< 0.5. Damping of the dimensionless maximum velocity in the 
nonsymn~etric jet occurs more rapidly (curve 2, Fig. 2a) as against the jet oufflowing from a flat nozzle with a 
rectilinear axis (curve 1). This difference is 32%. Here, the mixing region thicknesses ~'1 and ~'2 (curves 3, 4, 
respectively) are presented and compared with the opening of a flat submerged jet (curve 5). Figure 2b plots the 
results for the velocity maximum calculated in terms of the deviation angle from the central plane a and for the relative 
flowrate At) /00  variation (t)o is the flowrate in a symmetric submerged jet). The best coincidence between the 
calculated and experimental data on maximum velocity damping [5 ], angle a, and entrance section length s e [2 ] was 
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Fig. 3. Plot of Monin-Obukhov's coefficient: 1) data of [9 ]; 2) [11 ]; 3) [2 ]; 4) 
data of the present authors; 5) relation (18). 

Fig. 4. Turbulent structure coefficient vs curvature parameter: 1) data [2 ]; 2) 
data of the present authors; 3) relation (18). 

attained at the following values of the constants/6 and x for the entrance and main sections, respectively: fl = 1.245; 
0.30; ~c = 0.0083; 0.04. 

From Fig. 2b it follows that with increasing distance from the nozzle exit section the velocity profile deforms, 

resulting in the fact that the velocity maximum is shifted to the side of the concave nozzle surface (curve 6). The 
relative variation of the flowrate At)/(~o grows with increasing distance from the nozzle exit section (curve 7, Fig. 

2b), thereby pointing to the growth of the ejection abilities of such jets. 

Comparison of the experimental and calculated results allows a generalization of the available values of 
Monin-Obukhov's coefficient/6 for jets and mixing layers where the mixing layer momentum loss thickness-to-local 

curvature radius ratio 5**/R (surfaces for a wall jet, external flow streamlines for a free concurrent jet, and maximum 

velocity lines for a submerged jet) is chosen as the curvature parameter. For boundary layer-type flows 5**/R uniquely 

characterizes coefficient/6 variation over the range 0 < 5**/R < 0.01 [9 ]. A similar approach is proposed to write the 

coefficient x, where the quantity Kr = (1-u//Um) (5**/R) is used as a generalizing complex, which has been obtained 

for the first time from the asymptotic analysis of the integral relations and points to different action of centrifugal 
forces in jets and wakes [10 ]. 

Generalization of the calculated and experimental data has enabled one to plot a unique relation (curve 5, 
Fig. 3) for Monin-Obukhov's coefficient fl for jet flows over a wider range of the curvature parameter 0 < 5**/R < 

0.02, which also includes the recommendations used for boundary layer calculations [11 ]. Figure 4 plots the turbulent 

structure coefficient ~ based on the corresponding value of x0 for a symmetric jet [1 ]. Criterial equations that 

approximate the experimental data for the constants fl and ~c can be written within +7% in the following form: 

[ )10  ~,=  9 1 -t- 8000 R 0,001 •215 = 1 4- 73,4K~ "8 (18) 

The semiempirical calculation method presented in this article and expressions (18) make it possible to allow 
for the action of curvilinear surfaces upon the mixing processes in gas jets. This is necessary in forming a lower blast 
jet which is used for arranging multiple circulation of solid fuel particles in a low-temperature vortex furnace [12 ]. 

N O T A T I O N  

s, n, coordinates of a curvilinear coordinate system associated with the maximum velocity line (s-axis, 
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n, normal to it) ; x, y, Cartesian system coordinates; bl and b2, thicknesses of a nonsymmetric submerged jet reckoned 

from the maximum velocity line; l~l = blcosa + S sina, fi'2 = cosa - S sina, mixing boundaries determined from the 

straight line perpendicular to the nozzle exit section; u, longitudinal averaged velocity component; urn, u/, maximum 
bl 

velocity in a given cross section and concurrent flow velocity; 6**= fu /um(1-U/um)dh  momentum loss thickness of 
0 

the mixing region; R = R (s), local curvature; h = 1+n/R, Lain6 coefficient; nol, jet "core" halfwidth on the entrance 
bl 

section; Rc, curvature radius of the central line of the slotted nozzle; 0 = fudn,  volume flowrate per second; 
-b2 

At) = 0 - (~0, second flowrate variation. 
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